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The scattering of short surface waves by a partially immersed cylinder is con-
sidered. The cylinder is taken to be circular and to pass through two fixed points
on the free surface with its centre on or above the free surface. Of particular interest
is the behaviour of the solution as the cross-section of the immersed part of the
cylinder approaches a semicircle. The method of matched asymptotic expansions is
used.

1. Introduction and formulation

The scattering of short surface waves by a partially immersed cylinder is con-
sidered, with the aim of finding a high-order asymptotic solution. The cylinder is
taken to be circular and to intersect the free surface at two fixed points P and @ at
an angle « measured through the fluid [see (1.1)]; thus as « varies between 37 and ,
the immersed part of the cylinder changes from a semicircular cylinder to a dock.
The circular geometry is chosen to obtain explicit results, and in the final section the
results are generalized.

A high-order solution of this problem is of interest because of an apparent dis-
continuity in the transmission coefficient in the limit o — 17: in terms of the small
non-dimensional wavelength parameter ¢fa, the coefficients are O(¢fa)? and O(¢fa)? in
the limiting and semicircular cases respectively. A similar step from O(efa) to O(efa)?
was noted by Holford (1965) in the corresponding radiation problem.

Co-ordinates are chosen with the z axis parallel to the generators of the cylinder,
the y axis directed into the fluid and the z axis lying in the free surface. The cylinder
8§ is described by

2%+ (y —acota)? = a?cosec?a, (1.1)

and intersects the free surface at P (x = a) and @ (z = —a). It is held fixed and irra-
diated by the incoming wave Re{exp(—i(x—a)fe+ixy—yle—iwt)}, where w is the
angular frequency, ¢ = g/w? is 47 times the wavelength of the surface wave and y is
chosen to be }(1 —m/2a) 7 for algebraic convenience.

We seek a two-dimensional velocity potential of the form Re {¢(z, y) exp (—iwt)}
in the short-wave limit ¢ <€ a; the potential ¢ is then specified by the following
conditions:

$ost+ B,y =0 in the fluid, (1.2)
¢, =0 onS, (1.3)
p+ep, =0 on y=0, |z|>a, (1.4)
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where n is the outward normal from S and the suffixes denote partial derivatives. The
radiation conditions

N exp{—i(x—a)je+iy—yje}+ Rexpli(x—a)fe—ix—yle} as z->oo, 15
¢ :Texp{—i(x—a)/e—-ix——y/e} as r—> — } (1.5)

and the boundedness condition
0(0¢j06) >0 as 60, (1.6)

where ¢ is the distance from either P or @, ensure uniqueness provided that a > }.
Note that for & < 3 the approximate solution obtained here is uniquely determined.
We provide a solution for 0 < a < 7; the case a = 7 has minor differences and has
been considered by Leppington (1972).

The method of solution is the systematic method of matched asymptotic expansions
developed by Van Dyke (1964) as applied to problems involving short surface waves
by Leppington (1972, 1973«, b), Ayad & Leppington (1977) and Alker (1974, 1975).
The basic idea is that the fluid region can be covered by a number of overlapping
domains in each of which an asymptotic approximation of the potential ¢(x,y) may
be found. For a detailed application of the method the above papers should be con-
sulted; only the main features are summarized below.

In the ‘outer region’, which consists of points at distances > ¢ from the free surface,
the potential ¢ is written as an asymptotic expansion in €, ¢(x,y;€) ~ Za;(€) §4(x, y),
and substituted into the boundary conditions (1.2)—(1.5) to yield a sequence of prob-
lems for the potentials ¢;. Although this ‘outer expansion’ is expected to be valid
in most of the fluid, it cannot contain surface-wave terms and so fails near the free
surface. Clearly the boundedness condition at the points P and @ can no longer be
imposed on the outer expansion (P and @ being outside its domain of validity) and
eigensolutions, singular at P or , may be freely added to each term of the expansion;
their coefficients are later determined by the matching principle. The outer potentials
¢; are thus required to satisfy

V¢, =0 in the fluid, (1.7)

Pim=0 ons, (1.8)

$s= —p(x) on y=0, [z]|>a, (1.9)
$; >0 as x224+y?-—> o0, (1.10)

where p(x) is either zero or the derivative of a previous term. The behaviour of the
potential ¢ as P and @ are approached is important and use is made of the polar co-
ordinates (8, 0) and (8,, ¢,) defined by

(x—a,y) = (6cos0,8s8inf), (—x—a,y)= (8,c080,,0 s8inb,). (1.11)

In the vicinity of the two intersection points P and @, the solution will be sensitive
to the wave-bearing nature of the free surface, but will depend primarily on the local
geometry of S. This suggests that in these ‘inner regions’, comprising points at dis-
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tances <€ a from P and @, the solution varies on a wavelength scale, and for a detailed
examination we take co-ordinates

(X,Y) = (Rcos8, Rsin 0) = ((x—a)le, yle),
(X1, 1y) = (B cos 0y, R, sin 0;) = (— (z +a)le, ?//3),}

and define the inner potentials ® and ¥ by
DX, Y;e) = p(x,y;¢6), V(Xp,1y5€) = dlw,y;¢€). (1.13)

In these inner regions, the deviation of S from its tangent at the free surface is small,
and the boundary condition (1.3) is replaced by a new condition on the tangent by
expanding S and the inner expansion in a Taylor series about the tangent.

Thus the inner potentials are defined in terms of sloping-beach problems, and as
there is no boundedness condition as R and R, increase, eigensolutions unbounded
at infinity must be added to the expansions. The coefficients of the eigensolutions
added to the inner and outer expansions are determined when the expansions are
matched; thus the matching principle supplies the missing boundary conditions in
each region.

The inner potential ® is required to satisfy

(1.12)

V=0 for 0<0<a, (1.14)
®+P, =0 on Y=0, X>0, (1.15)
esina
O, + oa (2,0,—7* Q) +... =0 on £=0, 7>0, (1.16)
RBROn,—>0 as R—0, (1.17)

®—exp{—i(X—x)— Y} ~ Bexp{i(X —x)— Y} +wave-free terms as X - o0, (1.18)

where the co-ordinates (£, #) correspond to a rotation of the axes (to direct the # axis
along 6 = a) defined by

(§,9) = (Xsine— Y cose, X cosx + Y sina). (1.19)
Similar conditions hold for the potential ¥, except that the radiation condition is
¥ ~ Texp{i(X,—x)—Y,} +wave-free terms as X, — co. (1.20)

The matching principle to be used is a modified version of that proposed by Van
Dyke (1964): the modification due to Crighton & Leppington (1973) stipulates that
all terms of the form ¢7log ¢ or €7 loglog e must be grouped with €7 for matching pur-
poses. We first define the expansion of the inner potential ®(R, #;¢) up to and includ-
ing terms of order ¢ as ®®(R,f;¢). Then in order to match the inner potential
®(R,0;¢) with the outer potential ¢(d,8;¢), we take the limit of ®® as R — co and
replace R by d/e. This expression is then expanded in ¢ (for fixed 8) and truncated to
include terms of order up to and including €f, and the resulting series is denoted by
ded, Similarly, by replacing ¢ by €R in ®®, expanding and truncating after €*, we
obtain ¢¢9. The matching condition is

D = gt (1.21)
for any s and ¢ of our choice.
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Finally, the outer expansion is extended up to the free surface (for points at dis-
tances > ¢ from P and @) by simply continuing the surface waves — initially valid
only in the inner regions — over the whole free surface.

2. The basic solution

Inner eigensolutions
The eigensolutions in each region play an important role in the solution of the problem.
In the inner regions, the eigensolutions ®@,, which satisfy the conditions (1.14), (1.15),
(1.17) and

0P ot =0 on £=0, >0 (2.1)
may be extracted from Peters’ (1950) work on standing-wave solutions and are defined
by ;

#2 [ H(E) z }
h Re{m'fp 4 etdt
~ 2cos(X —y)e Y +2utl(p) sinmusinuffnR4+... as R->oo, (2.2)

3 £) %t .
0y = Re [ [ B ar— expimup) 00, 0= 1,2,...
~ —2isinmuqexp {i(X — x)— Y}—2/ﬁR‘Zq—1>f‘sin (2¢—1)pbT(1+ 29— 1) pu)+ ...,
(2.3)
where
p=m20, x=31-p)n, Z=X+iY

«© {2

710 = gy exp |~ 3 [ “hog [T | ) (2.4
The path P is defined as follows: if {~2#4f,({) has no branch point at the origin, then
P is taken anticlockwise on a circle of radius > 1 about the origin. Otherwise a cut is
taken along arg { = +7 -}« and a linear path extending to infinity on each side of
the branch cut is added to the circle. It is noteworthy that when 4 is an integer, and
in particular in the case of a vertical beach, all eigensolutions with no incoming waves
are totally wave free.

and

Outer eigensolutions

The eigensolutions ¢,, in the outer region which satisfy (1.7), (1.8), (1.10) and

$n=0 on |r/<a, y=0 (2.5)
are defined by
@En+u
Don —Re{ (Zti) L }, n=20,1%1,..., (2.6)

where z = x +7y.

First-order solution
Tt is straightforward to find the first-order term in each of the three expansions (see
Leppington 1972): in the illuminated inner region we find

D ~ OO = O, = Dy(X, Y), (2.7)
¢ ~ ¢W = 4O (2, y) (2.8)

in the outer region
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and in shadow inner region

¥~ W = DD, (X, ). (2.9)
The matching rules ®©#» = g®® and Y@M = w2 were used to determine the
coeflicients

o 2T @sinmp ) —p(T(w))? sinmp
m(2a) m(2a)%

(2.10)

and to show that to the order considered all other eigensolution coefficients are zero.
As expected, these first-order potentials are the least singular solutions for the three
regions.

To obtain a higher-order solution, further terms are postulated for each expansion
and substituted into the boundary conditions. Care must be taken not to exclude
unexpected terms.

Illuminated inner expansion
For the inner potential ¢, we pose
OV = @, + h(e) Py + €Dy, (2.11)

where the term h(e) @, is added to indicate the possibility of terms with scalings
other than ¢. Both @, and ®, have no incoming waves and must satisfy (1.14), (1.15),
(1.17)andon § =0

D), =0, @ = (—sin(x)/2a) (29D, — 7?Dyg)- (2.12)
The potential @, is a sum of eigensolutions with coefficients a,:
@, = X a, O, (2.13)
g=1

The potential @, is found in §4; in particular, its far-field expansion is found to have
a term R—*log Rsin uf.

Outer expansion

The far-field expansion of ®® suggests that the outer expansion has the form

UM = er D+ ettrlog e, +1(€) Py + €1, (2.14)
Each potential satisfies (1.7), (1.8) and (1.10); ¢, and ¢, are clearly eigensolutions thus
¢, = XnPens G = Xd, fen- (2.15)
The potential ¢, satisfies ¢, = — ¢, on |z| > @, y = 0, and in terms of
w=(z+a)/(z—a)
we find
¢2 = (1“’0/20’) ¢21+2fn¢em (2.16)
where
tete 4ip te—i=
= it _ e — -1
@2 = Re {sinaw B4 2wk - wtlogw sinaw” ; (2.17)

Shadow inner expansion

Similarly, for the potential ¥ we pose
Ya+2e = 20+ elt2 Jog €V, +j(€) V'; + 61 24, (2.18)
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The potentials ¥'; and ¥'; are eigensolutions with no incoming waves:

¥i=329,% Y=L (2.19)
q=

gz=1
The potential ¥, is determined to within eigensolutions by
¥,, = (—sin(a)/2a) (27¥y, —~7*%F¢,,) On =0, 7>0, (2.20)

where (o, 7) correspond to (§,7).
Once the two inner potentials ®; and ¥, are known, the expansions may be matched
and the eigensolution coefficients found. :

3. Inhomogeneous sloping-beach problems

The first work on the inhomogeneous problem was done by Shen (1965). He gave
explicit results for two particular cases of oscillating point sources on the free surface:
the transient problem with a beach angle }m and the steady-state problem with a
general beach angle. His formulation, using Peters’ (1950) approach, was valid for
any surface forcing. Morris (1974) generalized the steady-state problem to arbitrary
positioning of the source in the sector. Using Peters’ work in a similar way, the solu-
tion of the beach forcing problem is now given.

Define the real, harmonic potential ®(X, Y) and the analytic function W by the
following conditions:

@, = Re(H(Z)) on £=0, >0,
¢ = Re (W(Z)),

®+P,=0 on Y=0, X>0,
} (3.1)

where Z = X +1Y. Then in terms of the function W these conditions are

Re(W+iW')=0 on argZ =0, }

Re(~ie“W' —H)=0 on argZ =o. (3.2)

The functions in the parentheses may be analytically continued across arg Z = 0 and
arg Z = a by Schwarz’s reflexion principle, to define W in the sector —a <argZ < 3a.

For 0 < argZ < a we have
W(Z)—iW'(2) = — W(Z)—iW'(Z) } (3.3)
and —iele W' (Zedie) — H(Ze¥e) = —ieaW'(Z)+ H(Z), :

where W(Z) is intepreted as W(Z). Eliminating W and W' yields

WNZ)—iW'(Z) = ebieW"(Z e21*) i e¥2 W' (Z e?i)
+ ee[H(Ze?) + H(Z)—ie¥*H' (Ze**)—sH'(Z)]. (3.4)
Define the operator L by

Lo() = 5 f ] eZﬁ‘—’—‘Cng. (3.5)

Then the functions f({) and A({) are implicitly defined by
W(Z) = Lf(£), H(Z)= Lh(g), (3.6)
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for 0 < arg Z < a, where P is the same contour as that defining the eigensolutions
®,,. Representations for W(Ze**), H(Z ¢%*) and H(Z) may be found to be

W(Ze¥is) = Lf(Ge2), H(Zex) = Lh(Ee™®) .
A(2) = LK), ! ¢
for 0 < arg Z < a. On substitution, we find that (3.4) is satisfied when
(E—Df () = (£ +19) f(e2)+ G(E) (3.8)
for —m—3}a < arg{ < m— o (the range { covers on P), where
Q&) = —iei(&+4) M (h(Ce ) +h(E)). (3.9)
This equation is simplified by writing
F (&) = 1) fa8); (3.10)
note that the function f,(¢) defined by (2.4) satisfies the homogeneous equation
(E—A(8) = (E+0)fi(fe ™). (3.11)
The equation for f,({) is therefore
fol8) = fol§e =) + G(E(E — 1) f1(E)- (3.12)

For a suitably integrable function G (G = o({) as { + 00; @ = o({+) as {—~ 0), Plemelj’s
formula may be used to give a representation for f, in —2a < arg{ < 0:

=1 G(tte)dt
7O = Tmf ) D@ ()

Given the analytical continuation of the function f,, we have an integral representation

for @:
@ = Re{Lf({)}.
If £,(¢) has poles only where Re { < 0, then the far-field behaviour may be shown to be

(3.13)

® ~ Re{uteixeiZf,(i)} + wave-free terms.

To satisfy an outgoing radiation condition, a multiple of the standing-wave eigen-
solution ®,, may be added.

4, The evaluation of @, and ¥,
The potential @, is specified by the beach pressure

@, = (—sin(a)/2a) (29Dy, —7P*Pyg) on £=0, 7> 0.

As @, is real, the inhomogeneous part of @, is also real and hence analytic functions
w and w, may be defined by

o, = Re W(Z), ®,= ®,=ReWy(Z). (4.1)
Complex eigensolutions will be added to @, later. Following §3,
W(Z) = Lf(g),
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and using the fact that Wy(Z) = 2utLf,({) from (2.2), we find

h(E) = —prsinal’fi(C)/a. (4.2)

Using the difference equation (3.11) and the fact that ({—2)f({) is real for real {,
we find that

60) = 2 eopdsinalll +) 7 | 573100 (4.3)

[0 as ¢ o,
O1) as {->0.

Plemelj’s formula may be used for g > 1 (the case y = } is easily handled, but has
a zero sin o coefficient) to obtain the integral representation given by (3.13), and thus
the inhomogeneous part of @, is determined.

In the appendix an analytic continuation of the function f,(¢) is found and is
shown to satisfy (3.12) in the range —7 — }a < arg{ < m— }a. The far-field behaviour
of the potential is then found to be

O(X, ¥) ~ uH|f5)] cos (X — x+xz) e — (ubjam) T(yu) sin 7 R1~#sin (1 — 1) 0
+ (4ub /a7r )sin 7 R-#[log R sin u6 — 6 cos u0]
+ (¥ fam) T (u) sin mu K , R~ cos uf
— (utfam?) F(/L) (Kysin mp + 4mp cos mu) B+ sin puf + ... +q§0bq D, (44)

where |f5(3)] = |fy(e¥'")| and yx, = argf,(et'"). To ensure outgoing waves only, we
choose '
bo = — 3t fo(3)] e~ (4.5)

@, then has the form
®, ~ ip | f(6)] sin yy el X 0T, (4.6)

and the coefficient of the B—#sin xf term becomes
Ky = —cos umdpdT(p)fam — sin pm T(p) [(WB K, + amr | f,(3)| e~%a] Jan?. (4.7

[Note that when 4 = 1 the functions f, and f, are easy to find explicitly, and the far-
field expansion @, ~ (—1/2a)e*X—Y +4sinff/anR — 4 cos 20/amR? + ... agrees with that
found using the Green’s function in Alker (1974),i.e.a = —1/a,.]

The potential ¥, is similar to the potential ®@,, for using the co-ordinates (X, Y),
the beach forcing is

¥y = (—sin («)/2a) (27]‘1’07—772‘1"0&) on £=0, 7>0.
Now
Y, = D¥,, = DRe Wy(Z)— Dei"r®,,,

where Wi(Z) = 242 L({-2#f,({)) from (2.3). The analytic function DQ(Z) is defined to
be the inhomogeneous part of ¥, generated by DW,. Thus the potential ¥, may be
written as
¥, = D¥y, + 3k, @, (4.8)
>1
where !
Yo = Re Q—eitn®, + kD, (4.9)
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The function Q satisfies the same conditions as W, with W, replaced by W,. In this
case
G*(&) = 2_ eteub sin af(§+1)~ d* [ (4 ]
agz g+ !
= 0 (1) as (0. (4.10)

The previous device of writing f* = f, f5 will yield a problem for f; which cannot be
solved using Plemelj’s formula. However, by putting

FHE) = FUO T, |
£ = fof ge-m +§2ﬂa*<§)/<§—i)fl<§>,} (4.11)

a Plemelj representation for f, may be found directly. (In the general problem, the
function f may be found by a substitution of the form

f=hH()[A8*+ B log{+ ... + £7g,(£)])
The far-field behaviour of Q is given in the appendix; in particular
ReQ ~ u~tcos (X —x —pum+ x,) | f5(1)| e¥ + wave-free terms as X — oo,
where f,(e}i™) = | f,(?)] €', and to ensure outgoing waves we choose
= — 3} | f2(0)| exp (ipm —ixs). (4.12)
The wave-free far-field behaviour of ¥,(X,,Y]) is thus
WXy, 1) ~ #;1()—5
+ Ly RY cos u8; + Ly B sin u6,] —
[when g = 1, fy = —f,+4log {[mE?— 2[E2 and
aReQ ~ R?sin 20, — 2R, cos 0, + 4R, (log R, sin 6, + 0, cos 6,)[m — 4log B, [m — 4y[m
—diexp (1X, —Y,) + ... + wave-free eigensolutions,

[ R{+1sin (e + 1) 0, + 4u R (log R, sin u6, + 6, cos u6,)

2k( )R fsinpf +... (4.13)

which agrees with the form found using the Green’s function; see Alker 1975].

5. The second-order solution

The expansions have been found to second order, to within eigensolutions, and the
imposition of the matching principles

QL1+4 = ¢(1+/t,1), J1+2p,1+4) = ¢(1+#,1+2/t) (5.1)
determines all the coefficients of the eigensolutions. We find that
¢y = —C2p?fam, \

K ¥ sin unT
fo= - (2a§l‘ -~ (2a)¢fa7r2(lu) [m(1 +p) — 4 log 2a},

(5.2)
g, = —8u*Dfm,

— il
k= };(2:;;).1‘0 + (25)!11” [7(1 —p) cot o — L,]
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and that all the other coefficients are zero except for b, and k,, which are already de-

fined by (4.5) and (4.12).
It is useful to summarize the results as follows: for the illuminated inner expansion

we have
oV = @, +ed,, (5.3)

for the outer expansion
212
¢(1+'u) =C {€#¢80 —eltr lOg € E/‘; ¢60 —elts é“; ¢21} + el+'uf0 ¢e0’ (54)

and for the shadow inner expansion
Ya+2m = D{e®,, —e1t2]log e8u2®,, [ + 12 W'y } + kb, D,,. (5.5)
The reflexion coefficient is given by
R = 1 +iep | f,(3)| sin x5 +o(€) (5.6)
and the transmission coefficient by

T = iD{ — 2 sin ume2(1 + 8% log €/m) + eL+2uu—H| £36)| sin (xg — o) — €167 | £ | sim )
— 1€l t212k, sin wp + o(el12#). (5.7)

Recall that
C = 23T (u) sinmpfm(2a)*, D = —pu(I'(r))2sin mum(2a)2-.

6. The semicircular limit

In the introduction, reference was made to an apparent discontinuity in the trans-
mission coefficient as & - 7 (4 — 1). From the solution found, this coefficient is of
order €% for g + 1 and o(e*t?*) when x = 1. That this does not really represent a
non-uniformity in the solution may be seen from the occurrence of the coefficients
C and D, both of which contain the factor sin7u-and approach zero smoothly as
4 — 1. Thus rather than ‘disappearing’, a number of terms are seen to have coeffi-
cients which have zeros at g = 1. The first non-zero term, for x4 = 1, in the shadow
inner region is

¥® = ¢3(R, sin 8, — 1)[a®n, (6.1)

which is wave free.

To find the wave amplitude for # = 1, we return to the solution for a general angle
and continue the expansion, which must have the following form:

Y ~ P20 = 2, + el ]log €V, + €YY, + €34y + €M
+e2+2u(log €)2 W5 + et log eV + t(e) ¥, + €212, (6.2)

Clearly the potentials ¥, ¥',, ¥'; and ¥, are eigensolutions and have zero wave ampli-
tude for u = 1. The inhomogeneous part of ¥g will have a coefficient D from ¥,
and hence will not contribute. The potential ¥, may be considered as the sum of a
multiple of ¥, generated by the eigensolution &, ®,, of ¥, a second-degree inhomo-
geneous potential with a coefficient D from the remainder of ¥, and eigensolutions.
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Hence at # = 1 the only term to order ¢* to contribute to the wave amplitude is the

¥, term of ¥',. Thus
€t 27¢t X
¥ ~ wave-free terms—27“4;r‘l"21 ~ 7 eXPp (X, -Y)+..., (6.3)

and the transmitted wave past a semicircular cylinder is

b ) el (222

which is in agreement with the result proved rigorously by Ursell (1961).

7. Generalization

The generalization to non-circular cylinders is straightforward, and the order of
the transmitted wave is easily predicted. If at P the beach constant is g and v ~ gyv™
(where (u,v) = (¢£,€en) are scaled on the cylinder length scale), and at @ the beach
constant is v and 8 ~ Ay t¥ ((s,t) = (¢o,€7)), then the transmitted wave amplitude is

T ~ constant x P(e) Q(e) + ..., (7.1)

where P(¢) is the larger of e#sinnu and eV+#-1 and Q(e) is the larger of € sin7v and
eM+-1 The constant, which is independent of ¢, depends on the geometry of the
cylinder, and its determination requires details of the first-order outer potential,
aud possibly of the inhomogeneous potentials corresponding to @, and ¥',. Surprisingly,
the difficulty lies in the determination of the outer potential, the inner potentials
being very similar to those found here.

Radiation problems may be treated in a similar way.

I should like to thank Dr F. G. Leppington for his advice on the presentation of this
work, and the Science Research Council for its support.

Appendix

The solution of the inhomogeneous sloping-beach problems was reduced to solving
the difference equations (3.12) and (4.11) for f,({) and f3(£). Owing to their similarity,
attention is here focused on f,; the following also holds true for f,.

We require a solution f,({) of the equation

fa(8) = fa(Ee %) + G(O/(E— ) f1(8) (A1)

where 3
G(g) =2 ei""u sin a€(€+1’ d€2 [§+@f1 ]

for —7—}a < arg{ < m— }a. The function f;({), defined in (3.30), has simple poles at
{=exp(}imr) and exp{ti(3m+ (2r+1)a+2nm)}

and simple zeros at
§ = exp{ +i(3m+ 2ra + 2nm)}

for r,n > 0; see Holford (1965) and Peters (1950).
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Let
M) = HE/(E—9)fi(E)
then M({) has poles at { = e—4i7, exi7 and etidr+2a), We claim that Plemelj’s formula
gives the following integral representation for f,({) for —2a < arg¢ < 0:

1 [ Mg
10 = — 5 | o

In order to check that f, satisfies (A 1) for —7— }a < arg{ < 77— }e it will be neces-
sary to construct an analytic continuation for —7—3a < arg§ < 7— }a.

Analytic continuation for —20—im < argf < a+3inw
Let
1 M(tvize)
2mi Jp, t—C2

Ny(§) =

where L, is the straight path from the origin to infinity along *#, —i7m < 0 < a+ }71.
Then N, is an analytic function of { for # — 2a < arg{ < 6. Let max (—2x,0 —2a) = 6,
and min (0,8) = 8,. Then for 8, < arg{ < 8,, wehave N, ({) = Ny(§) = f,({), for no poles
have been passed over by the shift in contour and M is suitably bounded. Hence the
integrals N, provide an analytic continuation for f,into — 20 — 7 < arg{ < a +4n.

Equation (A 1) is satisfied by f,(§) for —3m < argl < a+37m

Choose { in the above range and 8, and 6, such that —}7 < 6, < arg{ < 6, < a +3m.
Then

. 1 Mize
FlEe) = N0 = g | ety
1 M (svzey

T =
and
1 M(tvze) .
2mi ) g, £— 8%

fo8) = Np,(£) = —

Now in the sector between L, and L, the only pole is at ¢ = {?, thus closing the
contour at infinity and using Cauchy’s theorem give

fo8) = fo€e>=) + M(E).

Continuation to —da —3m < arg{ < a+ 4m and check on (A 1)
Choose 0 < 8 < 2a, then define the function F({e~%i*) by
F(e?in) = Ny, g 3.(0)— ML) for —f—4m < argl < 2x—f—4n;

in this region both N and M have no poles. The function F({e2i¢) is an analytic
function, and for — 37 < arg{ < 2a—ﬂ—£ﬂ

F(Ee ) = f,(8) - = fo(Ee =)

Thus F({) is an analytic continuation of f2 into —da—§m <argl{ < —2a—47w
and from its definition f({e=%*) = f(§)— M({) for — 20— im < arg{. Hence we have
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an analytic continuation of f; into —4a— }7 < arg{ < o + 3 which satisfies (A 1) in
~2a—4m < arg{ < a+3n, and therefore in —m—4a < arg{ < 7 —3{a. Note that,
in the evaluation of f,(e¥m), either the contour L, must be chosen such that & > 4, or
if 6 = 0, the relation (A 1) must be used.

The expansion of f,(§) for small §

The integral representation
_ T [t M(s)
fold) =— . FF_C

valid for —2a < arg{ < 0 is expanded for small { by the following device. Choose y
such that || < v < 1 and write
fol) = —2utet=sina(l, + I,)/am,

LA L d2[s—1
; —J\ Szl(s-f-?/)a?z[s—_}_—ifl(.?)] s ; __fco d
1= ), e s—nhe o T,

In the first integral I,, s takes only values 0 < s <y < 1, thus the function fi(s)
is replaced by its expansion for small s (found by the same method). I, becomes

where

Y (u—1) 52— 2(cota —1) s 1+ O(s*2)
I, = ,“fo S2 P ds
_{lp—1)m N e pp—1) e =ulogy
—( 2¢ +2plog ot am sina vy 2 sina Fo(h).

In the integral /,, s always takes values s > |{|, so the factor (s* — {?#)~! is expanded
for small . We need only the first term, i.e.

o s—1
12 =f —F—ds+o(1), F = mfl(s)'

Y

This is too difficult to evaluate explicitly, however

F"[F = (u—1—2s(cote —1))[s?+0O(1) as s—>0.

Now
f:)E‘ds = J:o (/1,(/482— D_ 2i#‘§f::?)— i)) ds = —Lﬂ—y——l) + 2u(cot o — ) (log V- 322) .

Therefore

fll) = g{—z(ﬁg—l—)—ytlog{—ﬂ [ei"sinocfoaO (FI—’”—E) ds+i7r(1-—/1,)“+o(1)‘

Hence the limit of f,({)f,(£)/¢ as { — 0 is obtained; thus for large Z

3
Wi(Z) ~ —I‘%)zi {enZ\+sinmu + 4ipZ—+log Z sinmu + K, sin muZ—+
—i[Kysinmy + 4um cosmul Z—# + ...},
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where
e‘ia

sSmao

K,+:K, = ?rei“sinaf (E——E) ds+2i(1—pu)+(u—1) +4uyf(p),

F
0
K, and K, are real and yr(u) is the digamma function I''(u)/T"(u).

The expansion of f4(&) for small §
The function f,({) is defined for —2a < arg{ < 0 by the Plemelj integral
® a2 [s—1
4 1Y e | — — o2
,iei=sing S”‘””dsz[sws ”fl(s)]

£ = preal N Ty < Y PR Y

The expansion of this function as { - 0 is almost exactly the same as the expansion
of f5({). Recall that Q(Z,) = L({~%f,f;); we find

ds.

"‘i/‘j
Q(Z,) ~ anT(g) (7Z3+r + 4uZilog Zy + LZE + ...],
where ‘
) [tzs_zﬂfl] (u+1) 2iu(cota—i)
L=1L,+iL, =2e*sina Sl _,u,u2 ) _ Zuule =Y ds

$—1 _, s s(s+1)
— s~}

0 s+1

—20m(1 —p) — 4pfr(1 +p) — (+ 1) (cot x +3) 7.
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