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The scattering of short surface waves by a partially immersed cylinder is con- 
sidered. The cylinder is taken to be circular and to pass through two fixed points 
on the free surface with its centre on or above the free surface. Of particular interest 
is the behaviour of the solution as the cross-section of the immersed part of the 
cylinder approaches a semicircle. The method of matched asymptotic expansions is 
used. 

1. Introduction and formulation 
The scattering of short surface waves by a partially immersed cylinder is con- 

sidered, with the aim of finding a high-order asymptotic solution. The cylinder is 
taken to be circular and to intersect the free surface at two fixed points P and Q at 
an angle a measured through the fluid (see (l.l)]; thus as a varies between an and n, 
the immersed part of the cylinder changes from a semicircular cylinder to a dock. 
The circular geometry is chosen to obtain explicit results, and in the final section the 
results are generalized. 

A high-order solution of this problem is of interest because of an apparent dis- 
continuity in the transmission coefficient in the limit a -+ in: in terms of the small 
non-dimensional wavelength parameter €/a,  the coefficients are O(e/a)2 and O(e/a)* in 
the limiting and semicircular cases respectively. A similar step from O(E/U) to O ( B / ~ ) ~  
was noted by Holford (1965) in the corresponding radiation problem. 

Co-ordinates are chosen with the x axis parallel to the generators of the cylinder, 
the y axis directed into the fluid and the x axis lying in the free surface. The cylinder 
S is described by 

~ ~ + ( y - a c o t ( r ; ) ~  = a2cosec2a, (1.1) 

and intersects the free surface at P (x = a )  and Q (z = -a).  It is held fixed and irra- 
diated by the incoming wave Re {exp ( - i(x - a)/€ + ix - Y/E - iwt)},  where w is the 
angular frequency, E = g/w2 is in times the wavelength of the surface wave and x is 
chosen to be a( 1 - n/2a) n for algebraic convenience. 

We seek a two-dimensional velocity potential of the form Re {q5(x, y) exp ( - id))  
in the short-wave limit E < a;  the potential q5 is then specified by the following 
conditions: 

q5za+q51/v = 0 in the fluid, (1.2) 

q 5 n =  0 onS, (1.3) 

23 

q 5 + ~ & , = 0  on y=O,  1x1 > a ,  (1.4) 
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where n is the outward normal from S and the suffixes denote partial derivatives. The 
radiation conditions 

and the boundedness condition 

where S is the distance from either P or Q, ensure uniqueness provided that a 3 in. 
Note that for a < &r the approximate solution obtained here is uniquely determined. 
We provide a solution for 0 < a < n; the case a = n has minor differences and has 
been considered by Leppington (1972). 

The method of solution is the systematic method of matched asymptotic expansions 
developed by Van Dyke (1964) as applied t o  problems involving short surface waves 
by Leppington (1972, 1973a, b ) ,  Ayad & Leppington (1977) and Alker (1974, 1975). 
The basic idea is that the fluid region can be covered by a number of overlapping 
domains in each of which an asymptotic approximation of the potential #(x, y) may 
be found. For a detailed application of the method the above papers should be con- 
sulted; only the main features are summarized below. 

In  the ‘outer region’, which consists of points at  distances 9 e from the free surface, 
the potential $ is written as an asymptotic expansion in E ,  #(z, y; E )  N E olj(e) #j(z, y), 
and substituted into the boundary conditions (1.2)-( 1.5) to yield a sequence of prob- 
lems for the potentials $j. Although this ‘outer expansion’ is expected to be valid 
in most of the fluid, it cannot contain surface-wave terms and so fails near the free 
surface. Clearly the boundedness condition a t  the points P and Q can no longer be 
imposed on the outer expansion (P and Q being outside its domain of validity) and 
eigensolutions, singular at P or Q, may be freely added to each term of the expansion; 
their coefficients are later determined by the matching principle. The outer potentials 
# are thus required to satisfy 

V2#i = 0 in the fluid, (1.7) 

#ln = 0 onS, (1.8) 

#j = -p(x) on y = 0, 1x1 > a, (1.9) 

# j + O  as x2+y2+co, (1.1% 

where p(x) is either zero or the derivative of a previous term. The behaviour of the 
potential # as P and Q are approached is important and use is made of the polar co- 
ordinates (6,6) and (S,, 0,) defined by 

(z-a,y)  = (6cos8,Ssin6), ( - x - a , y )  = (Slcos6,,Slsin6,). (1.11) 

In the vicinity of the two intersection points P and Q, the solution will be sensitive 
to the wave-bearing nature of the free surface, but will depend primarily on the local 
geometry of S. This suggests that in these ‘inner regions’, comprising points at dis- 
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tances < a from P and Q, the solution varies on a wavelength scale, and for a detailed 
examination we take co-ordinates 

(X, Y )  = (Rcos8,Rsin8) = ((z-a)/e,y/e),  
(X,, Yl) = (R, cos 8,, Rl sin 8,) = ( - (z + U ) / E ~  y/e), 

(1.12) 1 
and defme the inner potentials @ and Y by 

@(X, Y;.) = $ ( G ? / ; e ) ,  Y ( X , , & ; 4  = $(X,Y;E). (1.13) 

In  these inner regions, the deviation of S from its tangent at the free surface is small, 
and the boundary condition (1.3) is replaced by a new condition on the tangent by 
expanding S and the inner expansion in a Taylor series about the tangent. 

Thus the inner potentials are defined in terms of sloping-beach problems, and as 
there is no boundedness condition as R and R, increase, eigensolutions unbounded 
at  infinity must be added to the expansions. The coefficients of the eigensolutions 
added to the inner and outer expansions are determined when the expansions are 
matched; thus the matching principle supplies the missing boundary conditions in 
each region. 

The inner potential @ is required to satisfy 

V2@ = 0 for 0 < 8 < a ,  (1.14) 

@ + Q Y = O  on Y = O ,  X > O ,  (1.15) 

e sin a @,+ 2a (2,@,-?pDtt)+ ... = 0 on 5 = 0, (1.16) 

R(DB+O as R + 0 ,  (1.17) 

@-exp{-i(X-X)- Y> - aexp{i(X-X)- Y)+wave-free t e r m s a s x - t w ,  (1.18) 

where the co-ordinates ( 5 , ~ )  correspond to  a rotation of the axes (to direct the 7 axis 
along 8 = a) defined by 

( 5 , ~ )  = (Xsina- Ycosa,Xcosa+ Ysina). 

Y - 5? exp {i(Xl - x) - Yl} + wave-free terms as X, -+ w. 

(1.19) 

(1.20) 

Similar conditions hold for the potential Y, except that the radiation condition is 

The matching principle to be used is a modified version of that proposed by Van 
Dyke ( 1  964): the modification due to Crighton & Leppington (1973) stipulates that 
all terms of the form €7 log E or €7 log log e must be grouped with €7 for matching pur- 
poses. We first define the expansion of the inner potential @(B, 0; e) up to and includ- 
ing terms of order t? as W ) ( R , 0 ; e ) .  Then in order to match the inner potential 
@(R, 8; e) with the outer potential &S, 8;  e), we take the limit of @@) as R -+ 00 and 
replace R by S/e. This expression is then expanded in e (for fixed 6) and truncated to 
include terms of order up to and including et, and the resulting series is denoted by 
Q(8.t). Similarly, by replacing 6 by eR in act), expanding and truncating after es, we 
obtain $( t l s ) .  The matching condition is 

@ ( S , t )  $(t,s) 

for any s and t of our choice. 
(1.21) 

23-2 
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Finally, the outer expansion is extended up to the free surface (for points a t  dis- 
c from P and Q )  by simply continuing the surface waves - initially valid tances 

only in the inner regions - over the whole free surface. 

2. The basic solution 
Inner eigensolutions 

The eigensolutions in each region play an important role in the solution of the problem. 
In  the inner regions, the eigensolutions CDw which satisfy the conditions (1.14), (1.15), 
(1.17) and 

may be extracted from Peters' (1950) work on standing-wave solutions and are defined 
bv 

a@,,/ag = 0 on g = 0,  7 > 0 (2.1) 

N 2 cos ( X  - x) e-Y + 2pW(p) sin np sin,uuB/nRP + . . . as R -+ co, (2.2) 

N - 2i sin npp exp ( i ( X  - x) - Y }  - 2 p 4 P - l ) ~  sin (2q - i ) p 8 / r (  1 + (2q - 1 ) p )  -+ . . ., 
(2.3) 

where 
,u = n/2a, x = & ( l - p ) n ,  2 = X + i Y  

and 
Y 1 -t-Zr ' 

~ ( 5 )  = Fi exp { - log [-I - dt) , n o  1 - t - 2  t 2 + p  (2.4) 

The path P is defined as follows: if [-2wfl(6) has no branch point at  the origin, then 
P is taken anticlockwise on a circle of radius > 1 about the origin. Otherwise a cut is 
taken along arg 5 = & n - .fia and a linear path extending to infinity on each side of 
the branch cut is added to the circle. It is noteworthy that when ,u is an integer, and 
in particular in the case of a vertical beach, all eigensolutions with no incoming waves 
are totally wave free. 

Outer eigensolutions 
The eigensolutions in the outer region which satisfy (1.7), (IS), (1.10) and 

#em = 0 on 1x1 c a, y = 0 
are defined bv 

where z = x +iy. 
First-order solution 

It is straightforward to find the first-order term in each of the three expansions (see 
Leppington 1972): in the illuminated inner region we find 
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and in shadow inner region 
Y N Y ( 2 P )  = E ~ ~ ' D @ ~ ~ ( X ~ ,  &). 

C =  , D =  -pU(r(p))2sinv (2.10) 2,dr ( p )  sin n,u 
n(2a)P n ( 2 ~ ) ~ P  

and to show that t,o the order considered all other eigensolution coefficients are zero. 
As expected, these first-order potentials are the least singular solutions for the three 
regions. 

To obtain a higher-order solution, further terms are postulated for each expansion 
and substituted into the boundary conditions. Care must be taken not to exclude 
unexpected terms. 

Illuminated inner expansion 
For the inner potential @, we pose 

@(l) = @o + h(€)  @h + (2.11) 

where the term h ( ~ ) @ h  is added to indicate the possibility of terms with scalings 
other than 8. Both @h and Q1 have no incoming waves and must satisfy (1.14), (1.15), 
(1.17)  and on ( = 0 

= 0, QIE = ( -sin (a)/Za) (2qQ0,, - q2QoCE). (2.12) 

The potent,ial @h is a sum of eigensolutions with coefficients ag: 
Qh = aq @@. (2.13) 

The potential Q1 is found in $4;  in particular, its far-field expansion is found to have 
a term R-P log R sinp0. 

Outer expansion 

9> 1 

The far-field expansion of W) suggests that the outer expansion has the form 

$(l+P) = €ao + €l+P log + I ( € )  + €1+P$h2. (2.14) 

and $I are clearly eigensolutions thus 

$1 = 2 cn $en7 $1 = dn $en. (2.15) 

Each potential satisfies (1.7), (1.8) and (1.10); 

The potential $2 satisfies $2 = - ( P o ,  on 1x1 > a, y = 0, and in terms of 

we find 

where 

w = (z+a)/(z-a) 

$2 = (PCl'a) $21 + 2 f n $ e n ,  

q521 = Re(~azu1+~+2uP--w~logw--w~-1 n sin a . 

(2.16) 

(2.17) I ieia 4ip ie-ia 

Shadow inner expansion 
Similarly, for the potential YP we pose 

Y ( 1 + 2 P )  = € 2 P Y o  + €1+2P log €Yl +j(€) Yj  + €1+2PY2. (2.18) 
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The potentials Yl and Yj are eigensolutions with no incoming waves: 

(2.19) 

The potential Y2 is determined to within eigensolutions by 

Y2g = ( -sin (a)/2a) (27y,,, - 72YOvg) on c = 0, 7 > 0, (2.20) 

where (c, 7) correspond to ( 5 , ~ ) .  

and the eigensolution coefficients found. 
Once the two inner potentials B1 and Y2 are known, the expansions may be matched 

3. Inhomogeneous sloping-beach problems 
The first work on the inhomogeneous problem was done by Shen (1965). He gave 

explicit results for two particular cases of oscillating point sources on the free surface: 
the transient problem with a beach angle 4;. and the steady-state problem with a 
general beach angle. His formulation, using Peters' ( 1  950) approach, was valid for 
any surface forcing. Morris (1974) generalized the steady-state problem to arbitrary 
positioning of the source in the sector. Using Peters' work in a similar way, the solu- 
tion of the beach forcing problem is now given. 

Define the real, harmonic potential @(X, Y )  and the analytic function W by the 
following conditions : 

(3.1) I cD+B,=O on Y=O,  X > O ,  
Bg = Re(H(2)) on 5 = 0, 7 > 0, 
@ = Re ( W ( Z ) ) ,  

where Z = X + i Y .  Then in terms of the function W these conditions are 

(3.2) I Re(W+iW') = 0 on argZ = 0, 
Re(-ieiaW'-H) = 0 on arg2  = a. 

The functions in the parentheses may be analytically continued across arg Z = 0 and 
erg Z = a by Schwarz's reflexion principle, to define Win the sector -a < argZ < 3 a. 
For 0 < argZ < a we have 

(3.3) I F ( Z ) - i F ' ( Z )  = - W ( Z ) - i W ' ( Z )  
and -iecaWt(ze2ia) -H(Ze2ia) = - i e iaW' (Z)  +B(z ) ,  

- 
where w ( Z )  is intepreted as W ( z ) .  Eliminating w and w' yields 

V ( Z )  - i W'(Z)  = e4ia r( z &a) + i W ' ( z  
+ eia[H(Ze2ia) +B(z)  -ie2ic%lt(Ze2ia) - i P ( Z ) ] .  (3.4) 

(3.5) 

Define the operator L by 
1 

Then the functions f( 6) and h( (I) are implicitly defined by 

W ( Z )  = L K ) ,  H ( Z )  = LW3, 
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for 0 < argZ < a, where P is the same contour as that defining the eigensolutions 
(Dq. Representations for W(ZeZia) ,  H(Ze2{") andB(2) may be found to be 

for 0 < argZ < a. On substitution, we find that (3.4) is satisfied when 

(C-i)f(C) = ( f ; + i > f ( 6 e - 2 i a )  + G(C) 

G(6) = - ie ia(C+i)  f;-1(h(Ce-2ia) +z(f;)). 

(3-8) 

(3.9) 

for - 7~ - *a < arg f; < 7~ - *a (the range 5 covers on P), where 

This equation is simplified by writing 

fee, = f1(f;)C2(5); (3.10) 

note that the functionf,(f;) defined by (2.4) satisfies the homogeneous equation 

(6- i)fl(f;) = (f;+ i)fl(6e-2i")* (3.11) 

The equation for f,(f;) is therefore 

f 2 K )  = f z ( f ; e -2 ia )  + G(f;)/(C-i)f1(5). (3.12) 

For a suitably integrable function G (G = o(f;) as 5 --f m; G = o(f;-f') as f;+ 0), Plemelj's 
formula may be used to give a representation for fz in - 2a < arg f; < 0: 

(3.13) 

Given the analytical continuation of the function f,, we have an integral representation 
for Q: 

Iff,(<) has poles only where Re f; < 0, then the far-field behaviour may be shown to be 

Q N Re {p-*eixeizfz(i)} + wave-free terms. 

To satisfy an outgoing radiation condition, a multiple of the standing-wave eigen- 
solution Qeo may be added. 

Q = Re{Lf(C)). 

4. The evaluation of Ql and Y, 
The potential Q1 is specified by the beach pressure 

Qlc = ( - sin(a)/2a) (2qQO7 - q2Q,) on 5 = 0, 7 > 0. 

As <Do is real, the inhomogeneous part of Ql is aIso real and hence analytic functions 
o and wo may be defined by 

Ql = Re W ( Z ) ,  Qo = (Dee = ReWo(Z). (4.1) 

Complex eigensolutions will be added to Ql later. Following 5 3, 

W ( Z )  = Lf(C), 
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and using the fact that W,(Z) = 2p*Lf,(c) from ( 2 . 2 ) ,  we find 

h(c)  = -p&sinac2f;(c)/a. (4.2) 

Using the difference equation (3.11) and the fact that (c-i)f,(c) is real for real 5, 
we find that 

- O([-l) as c - + q  
- [o(cp-1) as c-+ 0. 

Plemelj's formula may be used for p > 4 (the case p = 4 is easily handled, but has 
a zero sina coefficient) to obtain the integral representation given by (3.13), and thus 
the inhomogeneous part of Q1 is determined. 

In  the appendix an analytic continuation of the function f2([) is found and is 
shown to satisfy (3.12) in the range - n - $a < arg 6 < 7~ - $a. The far-field behaviour 
of the potential is then found to be 

@,(X, Y )  - p-41f2(i)J c o s ( X - - ~ + ~ , ) e - ~ ~ - ( p ~ / a n )  r(p)sinnpR1-psin(1-p)6 
+ (4p%/an) r ( p )  sin np R-p[log Rsinp6 - 6 cosp6] 
+ (p%/an) r ( p )  sin npK, R-l" cosp6 
- (@/an2) r(p) ( K ,  sin rp + 477p cos mp) R-/A sin@ + . . . + x b, QW, (4.4) 

where Jf2(i)J = if2(e@")) and X ,  = argf2(eiin). To ensure outgoing waves only, we 
choose 

(4.5) 

4> 0 

b, = - ip-41f2(i)l e-ixa. 

and the coefficient of the R-P sinp6 term becomes 

K3 = - c ~ ~ p n 4 p W ( p ) / ~ n -  sinpr r(p) [ ( p % ~ , + m  If,(i)( e-ixz]/a+. (4.7) 

[Note that when ,u = 1 the functions fi and f, are easy to find explicitly, and the far- 
field expansion @, - ( - i/2a) eix-' + 4 sin 6lan-R - 4 cos 26/a?rR2 + . . . agrees with that 
found using the Green's function in Alker (1974), i.e. a = - l/a,.] 

The potential Y, is similar to the potential @,, for using the co-ordinates ( X ,  Y ) ,  
the beach forcing is 

Now 
Yo = Dye ,  = D Re W,(Z) - Dein@Qe0, 

where W,(Z) = Z,U~L([-~~~,(LJ)  from (2.3). The analytic function OQ(2) is defined to 
be the inhomogeneous part of Y, generated by OW,. Thus the potential Y, may be 
written as 

where 
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The function Q satisfies the same conditions as W ,  with Wo replaced by W,. In this 
case 

= o(g-1-q as 6 +  0. (4.10) 

The previous device of writing f* = flf3 will yield a problem for f3  which cannot be 
solved using Plemelj's formula. However, by putting 

(4.11) 

a Plemelj representation for f 3  may be found directly. (In the general problem, the 
function f may be found by a substitution of the form 

f = fi (6) [ A  e + BYP log 6 + . . . + S2~~9,(Y)1.) 
The far-field behaviour of Q is given in the appendix; in particular 

Re Q N p-g cos ( X  - x -pn + x3) I f3(i) I e-= + wave-free terms as X -+ 00, 

wheref3(egi") = Ifs(i){ eixa, and to ensure outgoing waves we choose 

k, = - gp-4 If3(i)l exp (ipn - ix3). (4.12) 

The wave-free far-field behaviour of Y 2 ( X , ,  Y,) is thus 

~2(XI,Kl) - ptB [n R;+, sin (p + i el + 4p R; (log R, sin pel + el cos pel) 

+ L, R; cosp8, + L, RE sin@,] - 2 Rf sin p8, + . . . (4.13) 

anr(p) 
2k 

P W P )  
[when ,u = 1,  f3 = -fi + 4 log &c2 - 2/c3 and 

a Re R - R; sin 28, - 2R, cos 8, + 4R,(log R, sin 8, + 8, cos 8,)ln - 4 log R,/n - 4y/n 

which agrees with the form found using the Green's function; see Alker 19751. 

- 4i exp (iX, - $) + . . . + wave-free eigensolutions, 

5. The second-order solution 

imposition of the matching principles 
The expansions have been found to second order, to within eigensolutions, and the 

q,(i,i+~) p + p , i ) ,  yci+aP,i+p) ~ + P J + ~ P )  (5.1) 

determines all the coefficients of the eigensolutions. We find that 

co = -C2p2/an, 

J - p*r(p)fo +- cp [n( 1 - p)  cot a - L,] 
2(2a)P (2a)l+fi k, = 
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and that all the other coefficients are zero except for b, and k,, which are already de- 
fined by (4.5) and (4.12). 

It is useful to summarize the results as follows: for the illuminated inner expansion 
we have 

for the outer expansion 
@(I) = Qeo + €@, , (5.3) 

and for the shadow inner expansion 

The reflexion coefficient is given by 

2 = 1 + iep-4 Ifi(i) I sin x2 + o(e) (5.6) 

and the transmission coefficient by 

= iD{ - 2sinpre2p(1 + 8p2elogs/n) +s1+2pp-a[If3(i)l sin ( x 3 - p r )  - e ipn If2(i)l sinxz]} 
(5.7) - i ~ l + ~ p Z k ,  sin np + o(e1+2~). 

Recall that 
C = 2p4r(p) sin?i-p/n(2u)p, D = -p(r(p))2sinrp/r(2~)2/1.  

6. The semicircular limit 
In  the introduction, reference was made to an apparent discontinuity in the trans- 

mission coefficient as a: -+ in (p + 1). From the solution found, this coefficient is of 
order e2p for p + 1 and o ( ~ ~ + ~ f i )  when p = 1. That this does not really represent a 
non-uniformity in the solution may be seen from the occurrence of the coefficients 
C and D ,  both of which contain the factor sinrp-and approach zero smoothly as 
p --f 1. Thus rather than 'disappearing', a number of terms are seen to have coeffi- 
cients which have zeros a t  p = 1. The first non-zero term, for p = 1, in the shadow 
inner region is 

which is wave free. 

and continue the expansion, which must have the following form: 

Y(3) = e3(R, sin 8, - l)/u3n, (6.1) 

To find the wave amplitude for p = 1, we return to the solution for a general angle 

Clearly the potentials Y3, Y,, Y, and Ye are eigensolutions and have zero wave ampli- 
tude for p = 1. The inhomogeneous part of Y6 will have a coefficient D from Y,, 
and hence will not contribute. The potential Y, may be considered as the sum of a 
multiple of Y2, generated by the eigensolution k, Qe1 of Y,, a second-degree inhomo- 
geneous potential with a coefficient D from the remainder of Y2, and eigensolutions. 
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Hence at p = 1 the only term to order c4 to contribute to the wave amplitude is the 
Y,, term of Y,. Thus 

(6.3) 
€ 4  2ik 

2a4n na4 Y - wave-free terms - - 

and the transmitted wave past a semicircular cylinder is 

N - exp (iX, - Y )  + . . . , 

N (3‘“ exp ( - i (--) x + a  - 3, 
n 

which is in agreement with the result proved rigorously by Ursell(l961). 

7. Generalization 
The generalization to non-circular cylinders is straightforward, and the order of 

the transmitted wave is easily predicted. If a t  P the beach constant is p and u N PNvN 
(where (u, v) = ( e t ,  €7) are scaled on the cylinder length scale), and a t  Q the beach 
constant is u and s N A,tM ((8,  t )  = (en, m)) ,  then the transmitted wave amplitude is 

(7.1) F - constant x P(e) Q ( B )  + . . . , 
where P(c) is the larger of d sin np and sN+P-l and Q ( E )  is the Iarger of e p  sin nu and 
eM+”--l. The constant, which is independent of B ,  depends on the geometry of the 
cylinder, and its determination requires details of the first-order outer potential, 
and possibly of the inhomogeneous potentials corresponding to and Y2. Surprisingly, 
the difficulty lies in the determination of the outer potential, the inner potentials 
being very similar to those found here. 

Radiation problems may be treated in a similar way. 

I should like to thank Dr F. G .  Leppington for his advice on the presentation of this 
work, and the Science Research Council for its support. 

Appendix 
The solution of the inhomogeneous sloping-beach problems was reduced to solving 

the difference equations (3 .12)  and (4.11) for!,([) andf3(C). Owing to their similarity, 
attention is here focused onf,; the following also holds true for f3. 

We require a solution f&) of the equation 

where 

for -n- &z < argc < n- Qa. The functionf,(f), defined in (3.30), has simple poles at 

6 = exp (gin) and exp { & i(&r + (2r + 1) a +2nn)} 

and simple zeros at 

for r ,  n 2 0; see Holford (1965) and Peters (1  950). 

C = exp { f i(#n + 2ra + 2nn)) 
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Let 
= G((5)/K-i)f,(C); 

then M((5) has poles a t  (5 = e-iin, e*$in and e*i($n+2a). We claim that Plemelj's formula 
gives the following integral representation for fz((5) for - 2a < arg (5 < 0: 

In  order to check that fi satisfies (A 1)  for - n - *a < arg (5 < n - &a it  will be neces- 
sary to construct an analytic continuation for - n - $a < arg (5 < n - &a. 

Analytic continuation for - 2a - in < arg (5 < a + an 
Let 

where Lo is the straight path from the origin to infinity along e2ipe,  - in < 8 < a + in. 
Then No is an analytic function of (5 for 6 - 2a < arg (5 < 8. Let max ( - 2a, 6 - 2a) = 8, 
and min (0,e) = 6,. Then for 8, < arg 5 < 6,, ,we have No (6) = N,((5) = f2((5), for no poles 
have been passed over by the shift in contour and M is suitably bounded. Hence the 
integrals No provide an analytic continuation for f, into - 2a - $n < arg 6 < a + an. 

Equation (A 1)  i s  satisjied by f&) for - &r < arg g < a +in 
Choose 6 in the above range and 8, and 6, such that - in < 8, < arg 6 < 8, < a + in. 
Then 

and 

Now in the sector between Lo1 and Lo,, the only pole is a t  t = 6 2 p ,  thus closing the 
contour at infinity and using Cauchy's theorem give 

f Z ( Y )  = fz(6e-2ia) + M(5).  

Continuation to - 4a - in < arg (5 < a + in and check on (A 1) 
Choose 0 < 8 < 2a, then define the function P(ce-zia) by 

P(ge-zta) = NZa+-in((5) - M ( { )  for 

in this region both N and M have no poles. The function P(6e-zia) is an analytic 
function, and for - &n < arg 6 < 2a - 8 - in 

F(ce-2i") = f,(c) - M ( 6 )  = f2((5e-"a). 

Thus P(c)  is an analytic continuation of fz(c) into - 4a - &r < arg (5 < - 2a - +n 
and from its definition f (cecZia)  = f(c) - M ( c )  for - 201 - in < arg 5. Hence we have 

-8- in < arg 6 < 231 -/?- tn; 
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an analytic continuation of f ,  into - 4a - in < arg 6 < a + in which satisfies (A 1) in 
- 201 - Bn < arg 5 < a + in, and therefore in - n - *a < arg 5 < n - &a. Note that, 
in the evaluation of f2(e*i"), either the contour Lo must be chosen such that 6 > in, or 
if 6 = 0, the relation (A 1) must be used. 

The expansion of f2({) for small C; 
The integral representation 

ds 
s2P - 6% 

valid for - 2a < arg 5 2 0 is expanded for small 6 by the following device. Choose y 
such that 

f2(5) = -2p)eZ'asina(I,+I,)/an, 

< y < 1 and write 

where 

I ,  = (s2'- <2P) ( s  - i)f,(s) ds, I ,  = I y w . . . d s .  

In  the first integral I , ,  s takes only values 0 ,< s < y < 1, thus the function f ,(s)  
is replaced by its expansion for small s (found by the same method). I ,  becomes 

ds 
I ,  = I O Y  (p - 1 )  s2p-2 - 2(cot a - i) s2p--1+ O(s4P-2) 

$P c pfi 
e-ia p(p - 1)  e-iap log y 
sin a Y sin a + o( 1) .  

In  the integral I,, s always takes values s $ 151, so the factor (s2' - c2~)-l  is expanded 
for small 6. We need only the first term, i.e. 

S - i  
1, = j y w g d s + o ( l ) ,  F = - S + i  f1(8). 

This is too difficult to evaluate explicitly, however 

F'/F = (p - 1 - 2s(cot a - i)) /s2 + O( 1) as s -+ 0. 
Now 

Therefore 

Hence the limit off,(<) f2( { ) / {  as 5 -+ 0 is obtained; thus for large 2 

W,(Z) - '1 pit ( i n ~ 1 - P  sin np + 4ipz-P log z sin np + K ,  sin np2-p an2 
- i [ K ,  sin np + 4pn cos np] Z-F + . . .}, 
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where 
,ia 

ds+2i(l-p)+(p-1) -+4plCr(p), sin a 

K ,  and Kl are real and $(p) is the digamma function F’(p)/I’(p). 

The expansion of f3(c) for small 5 
The functionf3([) is defined for - 2a < arg [ < 0 by the Plemelj integral 

The expansion of this function as c + 0 is almost exactly the same as the expansion 
off2([). Recall that Q(2,) = L([-2pflf3); we find 

where 

L = L2+iLl = 2eiasina 

a 

bm 

- ~ -  
S2 s(s + i) - s-”fl 

0 

- 2in(l -p) - 4&(1 +/A) - (,u+ 1) (cots +i) 7 ~ .  
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